
Decision Procedures for Composition and Equivalence of
Symbolic Finite State Transducers

Margus Veanes
Microsoft Research, Redmond

margus@microsoft.com

David Molnar
Microsoft Research, Redmond

dmolnar@microsoft.com

Benjamin Livshits
Microsoft Research, Redmond
livshits@microsoft.com

ABSTRACT
Finite automata model a wide array of applications in soft-
ware engineering, from regular expressions to specification
languages. Finite transducers are an extension of finite au-
tomata to model functions on lists of elements, which in turn
have uses in fields as diverse as computational linguistics and
model-based testing. Symbolic finite transducers are a fur-
ther generalization of finite transducers where transitions are
labeled with formulas in a given background theory. Com-
pared to classical finite transducers, symbolic transducers
are far more succinct in the case of finite alphabets, because
they have no need to enumerate all cases of a transition;
symbolic transducers can also use theories, such as the the-
ory of linear arithmetic over integers or reals, with infinite
alphabets.

Given a decision procedure for the background theory,
we show novel algorithms for composition and equivalence
checking for a large class of symbolic finite transducers,
namely the class of single-valued transducers. Our algo-
rithms give rise to a complete decidable algebra of symbolic
transducers. Unlike previous work, we do not need any syn-
tactic restriction of the formulas on the transitions, only a
decision procedure; in practice we leverage recent advances
in satisfiability modulo theory (SMT) solvers. We show how
to decide single-valuedness, which means that symbolic fi-
nite transducers arising from practice can be checked to see
if our algorithms apply. Our base algorithms are unusual
in that they are nonconstructive, so we exhibit a separate
model generation algorithm that can quickly find counterex-
amples in the case two symbolic finite transducers are not
equivalent.

As a key example, string manipulation is a particularly
important application of our theoretical results with imme-
diate benefits to bug finding. Our work makes symbolic
finite transducers a practical approach for software engi-
neering applications, such as the analysis of security-critical
sanitization functions in web pages and model based testing.

Microsoft Research Technical Report
MSR-TR-2011-32
March 14, 2011

1. INTRODUCTION
Finite automata are used in a wide range of applications

in software engineering, from regular expressions to spec-
ification languages. Nearly every programmer has used a
regular expression at one point or another to parse logs or
manipulate text. Finite transducers are an extension of fi-
nite automata to model functions on lists of elements, which
in turn have uses in fields as diverse as computational lin-
guistics and model-based testing. While these objects are of
immense practical use, they suffer from certain drawbacks:
in the presence of large alphabets, they can “blow up” in
the number of states, as each transition can encode only one
choice of element from the alphabet. Furthermore, their
most common forms cannot handle infinite alphabets.

Symbolic finite transducers are an extension of traditional
transducers that attempt to solve these problems by allowing
transitions to be labeled with arbitrary formulas in a speci-
fied theory. While the concept is straightforward, traditional
algorithms for deciding composition, equivalence, and other
properties of finite transducers do not immediately gener-
alize to the symbolic case. In particular, previous work on
symbolic finite transducers has needed to impose syntactic
restrictions on formulas to achieve decidable analysis. Our
work breaks this barrier and allows for arbitrary formulas
from any decidable background theory. In practice, we lever-
age the recent progress in satisfiability modulo theory (SMT)
solvers to provide this decision procedure. We find that our
algorithms are fast when used with Z3, a state of the art
SMT solver.

The restriction we do make is a semantic one: that the
symbolic finite transducer is single-valued. This restriction
is needed because equivalence is undecidable even for stan-
dard finite transducers. We show that the single-valuedness
property is decidable for symbolic finite transducers. This
gives us a way to check transducers arising from practical
applications before applying our algorithms.

While it was previously known that equivalence was de-
cidable for single-valued transducers, again it does not im-
mediately follow that equivalence should be decidable for
single-valued symbolic finite transducers because typically
even very restricted extensions of finite automata and fi-
nite transducers lead to undecidability of the core decision
problems. In fact, our proof requires a delicate separation
between the “automata theoretic” parts of our algorithms
and the use of the decision procedure. Unusually, our al-
gorithm for deciding equivalence is nonconstructive: while
we can determine that two symbolic finite automata are not
equivalent, our proof does not provide a way to find a coun-

1

terexample. Fortunately, we provide a separate model gen-
eration algorithm that can find counterexamples once it is
known that two automata are not equivalent.

Overall, our algorithms enable the use of symbolic finite
automata and transducers as first class objects for designing
new program analyses, just as in the case of regular expres-
sions and traditional finite automata.

1.1 Applications
Below we describe specific applications that would benefit

from this work, but we expect there are many more to follow.

• Security sanitizer checking. Our algorithms are
used in the BEK project, which consists of a new do-
main specific language and analysis engine for “sani-
tizer” routines in web applications. A sanitizer is a
string to string transformation that attempts to re-
move “bad” elements from data contributed to an ap-
plication by an untrusted user. For example, with Web
applications typically we want to remove strings that
may be interpreted by the browser as JavaScript.

• List comprehension programs. Our approach al-
lows for analysis of programs that iterate over lists of
elements, such as string transformations or graphics
transformations. We can express these programs as
symbolic finite transducers, then combine them using
our new algorithms.

• Integrated decision procedure for SMT solvers.

We can apply our algorithms to SMT solvers to yield
symbolic finite transducers as a first class decidable
theory for future SMT solvers.

• Symbolic model analysis in the context of model-

based testing. Symbolic transducers allow us to rep-
resent side effects from calling APIs or functions. The
symbolic formulas in turn let us represent potential
constraints on the arguments to such APIs without
leading to a huge blowup in the size of the transducer.

• Natural language processing. Finite transducers
were studied extensively in the context of natural lan-
guage processing. Symbolic finite transducers allow for
the use of infinite alphabets.

1.2 Contributions
Our contributions are the following:

• We show that single-valued symbolic finite transduc-
ers can be used for software engineering applications,
by giving practical algorithms for manipulating such
transducers.

• In particular, we give novel algorithms for composition
and equivalence checking of symbolic finite transduc-
ers. Our algorithms, unlike previous work, make no
restrictions on the formulas used in the transducers.
Instead, we require only a decision procedure for the
background theory.

• We show that the single-valuedness property of sym-
bolic transducers is decidable. This gives rise to a de-
cidable complete algebra of symbolic transducers.

• We outline how our new algorithms for symbolic fi-
nite transducers apply to practical software engineer-
ing problems.

private static string EncodeHtml(string t)

{

if (t == null) { return null; }

if (t.Length == 0) { return string.Empty; }

StringBuilder builder =

new StringBuilder("", t.Length * 2);

foreach (char c in t)

{

if ((((c > ’‘’) && (c < ’{’)) ||

((c > ’@’) && (c < ’[’))) || (((c == ’ ’) ||

((c > ’/’) && (c < ’:’))) || (((c == ’.’) ||

(c == ’,’)) || ((c == ’-’) || (c == ’_’))))){

builder.Append(c);

} else {

builder.Append("&#" +

((int) c).ToString() + ";");

}

}

return builder.ToString();

}

Figure 1: Code for AntiXSS.EncodeHtml from ver-

sion 2.0 in C#.

2. MOTIVATING EXAMPLE
Figure 1 shows code in C# for EncodeHtml, an example of

a string-to-string transformation that is used in real web ser-
vices on data from untrusted users. This routine is designed
as a protection against cross-site scripting attacks (XSS), in
which a malicious user submits data to the web service that
may later be mistakenly interpreted as JavaScript code by
another user’s browser. The goal of this function is to escape
all characters that might lead the browser to start executing
JavaScript.

Example 1. We show how EncodeHtml can be translated
to a symbolic finite transducer. Let ϕ[`] be the following
formula, encoding the if condition in Figure 1:

(‘a’ ≤ ` ≤ ‘z’) ∨ (‘A’ ≤ ` ≤ ‘Z’) ∨ (‘0’ ≤ ` ≤ ‘9’) ∨
` = ‘ ’ ∨ ` = ‘.’ ∨ ` = ‘,’ ∨ ` = ‘-’ ∨ ` = ‘_’

The symbolic finite transducer has a single state because
no Boolean variables change inside the body of the foreach
statement. The if statement in the original function trans-
lates into two self-loops. In our encoding below, di(`) is the
map from character ` to its i’th decimal digit of the integer
encoding of `, modeling the C# code ((int)c).ToString()
in EncodeHtml.

The resulting SFT contains the following six transitions:

q
ϕ/[`]
−−−→ q

(0≤n≤4) q
¬ϕ[`]∧10n≤`<10n+1/[‘&’,‘#’,dn(`),...,d0(`),‘;’]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q (1)

where

di(`)
def
= ((`÷ 10i)%10) + 48

is a term in linear (bitvector) arithmetic computing the i’th
decimal digit of ` (as a character), where ÷ is bitvector divi-
sion, + is bitvector addition, and % computes the remainder
after dividing its first operand by its second. The collection
of five transitions in (1) corresponds to the program state-
ment "&#" + ((int) c).ToString() + ";". Note that the

2

SFT obtained from EncodeHtml is deterministic and thus
single-valued because all the transition formulas are mutu-
ally exclusive. �

As an example of applying this transducer, consider the in-
put "c&e" . Because ‘&’ = 38 and ϕ[38] does not hold, it
follows that

TEncodeHtml("c&e") = {"c&e"}.

Once the SFT representation of this function is produced,
we can proceed to test this implementation to determine if

• it is idempotent, which is important because web de-
velopers may accidentally apply a sanitizer multiple
times to untrusted data;

• if it commutes with other sanitizers used in the pro-
gram, which is important because programs may apply
multiple different sanitizers to data [35];

• and, most importantly, given a target dangerous out-
put, is it possible to produce an input that would gen-
erate it. This allows checking whether known“danger-
ous” strings are properly ruled out by the sanitizer or
not.

3. PRELIMINARIES
We use basic notions from classical automata theory [21],

classical logic, and model theory [17]. Our notions regard-
ing finite state transducers are consistent with [46] and [14]
regarding the view of finite state transducers as finite state
tree transducers over linear trees.

3.1 Background universe
We work modulo a background structure U over a lan-

guage that is multi-sorted and write U also for the universe
or domain of U . For each sort σ, Uσ denotes a nonempty sub-
domain of U . There is a basic Boolean sort bool, Ubool =
{true, false}, and the standard logical connectives are as-
sumed to be part of the background. Terms are defined
by induction as usual and are assumed to be well-sorted.
Function symbols with range sort bool are called relation
symbols. Boolean terms are called formulas or predicates. A
term without free variables is ground. Elements of U are also
considered as ground terms. A term t of sort σ is indicated
by t : σ. Given a term t and a substitution θ from vari-
ables to terms, Subst(t, θ) or tθ denotes the term resulting
from applying the substitution θ to t. An if-then-else term
Ite(ϕ, t1:σ, t2:σ) equals t1 if ϕ is true; it equals t2 otherwise.

We also use the basic sorts int of integers, bvn of n-bit-
vectors, for n ≥ 1 and tuple〈σ0, . . . , σn−1〉, for n ≥ 1, of
n-tuples of elements of basic sorts σi for i < n. All sorts are
associated with built-in (predefined) functions and built-in
theories. For example, there is a built-in Boolean function
(predicate) < : bv7×bv

7 → bool that provides a strict total
order of all 7-bit-vectors that is assumed to match with the
standard lexicographic order over ASCII characters. For
each n-tuple sort there is a constructor and a projection
function πi : tuple〈σ0, . . . , σn−1〉 → σi, for i < n, that
projects the i’th element from an n-tuple.

For each sort σ, list〈σ〉 is the list sort with element sort
σ. Lists are algebraic data types. There is an empty list ε :
list〈σ〉 and for all e : σ and l : list〈σ〉, [e | l] : list〈σ〉. The
accessors are hd : list〈σ〉 → σ and tl : list〈σ〉 → list〈σ〉

with their usual meaning. We also adopt the convention
that [a, b, c] stands for the list [a | [b | [c | ε]]] and we write
l1 · l2 for the concatenation of l1 with l2.

Lists of a given element sort σ are also called words and
the list elements are called characters when the sort σ is
basic or corresponds to a basic sort. In the context of
string analysis, characters have typically the sort bv

n for
some fixed n > 0, e.g., n = 7 if words represent strings of
ASCII characters. Constant characters are written as ‘a’
assuming for example ASCII encoding. When σ is a sort
for characters that is clear from the context, we use the
standard string notation "abc" for [‘a’, ‘b’, ‘c’]. In general
however, characters may have compound basic sorts such
as tuple〈bv7, bv7,bool〉, while, e.g., lists of unbounded
length are not considered as characters.

3.2 Finite state transducers
A finite transducer is a generalization of a Mealy machine

that, in addition to its input and output symbols, has the
special symbol ε denoting the empty word making it possi-
ble to omit characters in the input and output words. We
start with the classical definition of finite transducers. The
particular subclass of finite transducers that we are consid-
ering here are also called generalized sequential machines or
GSMs [46], however, this definition is not standardized in the
literature, and we therefore continue to say finite transduc-
ers for this restricted case. The restriction is that, GSMs
read one symbol at each transition, while a more general
definition allows transitions that may skip inputs.

Definition 1. An input-ε-free finite transducer A is de-
fined as a six-tuple (Q, q0, F,Σ,Γ,∆), where Q is a finite set
of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, Σ is the input alphabet, Γ is the output alphabet, and
∆ is the transition function from Q× Σ to 2Q×Γ∗

.

In this paper we say finite transducer for input-ε-free finite
transducer. We indicate a component of a finite transducer
A by using A as a subscript. For (q, v) ∈ ∆A(p, a) we define

the notation p
a/v
−−→A q, where p, q ∈ QA, a ∈ ΣA and v ∈

Γ∗
A. We write p

a/v
−−→ q when A is clear from the context.

Given words v and w we let v · w denote the concatenation
of v and w. Note that v · ε = ε · v = v.

Given qi
ai/vi−−−→A qi+1 for i < n we write q0

u/v
−−→A qn

where u = a0 · a1 · . . . · an−1 and v = v0 · v1 · . . . · vn−1.

We write also q
ε/ε
−−→A q. A induces the transduction or

transformation, TA : Σ∗
A → 2Γ

∗

A :

TA(u)
def
= {v | ∃q ∈ FA (q0A

u/v
−−→ q)}

We lift the definition to sets, TA(U)
def
=

⋃

u∈U TA(u).
We say that A is deterministic if it has no two transitions

with the same source state and same label but different out-
puts or target states. (While weaker definitions of deter-
ministic finite state transducers exist, the given definition is
consistent with [14].)

The following subclass of finite transducers plays a central
role in the section that introduces a decision procedure for
equivalence of symbolic finite transducers.

Definition 2. A is single-valued if (∀u ∈ Σ∗
A)|TA(u)|≤1.

Note that determinism implies single-valuedness, while
the converse is not true. Moreover, there exist nondeter-

3

ministic single-valued finite state transducers without any
equivalent deterministic finite state transducer.

4. SYMBOLIC FINITE TRANSDUCERS
In this section we describe an extension of finite trans-

ducers through a symbolic representation of labels by pred-
icates. The advantage of the extension is succinctness and
modularity with respect to the background theory of labels.
It naturally separates the finite state transition graph from
the theory of labels.

In the following let `:σ be a fixed variable of sort σ. We
refer to `:σ as the input variable (for the given sort σ).
Termσ(x̄) denotes the set of terms of sort σ with free vari-

ables contained in x̄ and Pred(x̄)
def
= Termbool(x̄).

Definition 3. A Symbolic Finite Transducer (SFT) is a
six-tuple (Q, q0, F, σ, γ, δ), where Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states,
σ is the input sort, γ is the output sort, and δ is the finite
symbolic transition function from Q× Pred(`) to subsets of

Q× Termlist〈γ〉(`).

We use the notation p
ϕ/u
−−→A q for (q,u) ∈ δA(p, ϕ) and

call p
ϕ/u
−−→A q a symbolic transition, ϕ/u is called its label,

ϕ is called its input (guard) and u its output.
An SFT A = (Q, q0, F, σ, γ, δ) denotes the finite state

transducer

[[A]]
def
= (Q, q0, F,Uσ,Uγ ,∪{[[ρ]] | ρ ∈ δA)

where

[[p
ϕ[`]/u[`]
−−−−−→A q]]

def
= {p

a/u[a]
−−−−→[[A]] q | a ∈ Uσ, ϕ[a] is true}

Note that [[ρ]] may be infinite when U ι is infinite. Thus,
we allow infinite alphabets in [[A]]. For an SFT A let the
underlying transduction TA be T[[A]]. For a state q ∈ QA
let T

q
A(v) denote the set of outputs generated from state q

from the enabled input v. An SFT A is single-valued (resp.
deterministic) if [[A]] is single-valued (resp. deterministic).

Note also that a transition p
ψ/Ite(ϕ,t,u)
−−−−−−−−→ q is equivalent

to having two transitions p
ψ∧ϕ/t
−−−−→ q and p

ψ∧¬ϕ/u
−−−−−→ q. We

make use of this if-then-else representation in our examples.
In the following examples, all SFTs are single-valued. The

first example illustrates a few simple functional list transfor-
mations, expressed as deterministic SFTs that illustrate how
global properties of SFTs depend on the label theory.

Example 2. Let the input sort and the output sort be
int. All SFTs have a single state here. Negate multiplies all
elements by -1. Increment adds 1 to each element. DeleteZe-
ros deletes all zeros from the input.

δNegate = {p
true/[−`]
−−−−−−→ p}

δIncrement = {q
true/[1+`]
−−−−−−→ q}

δDeleteZeros = {r
`=0/[]
−−−−→ r, r

` 6=0/[`]
−−−−→ r}

Properties such as commutativity and idempotence of SFTs
depend on the theory of labels. For example properties like,
Negate and DeleteZeros commute, DeleteZeros is idempo-
tent, and Negate and Increment do not commute, depend
on properties of integer addition and multiplication. Note

that none of the examples can be expressed as traditional
finite state transducers over a finite alphabet. �

Example 1 demonstrates a more involved use of the la-
bel theory. It shows a precise representation of the sanitizer
AntiXSS.EncodeHtml from version 2.0 of the Microsoft An-
tiXSS library. The sanitizer is shown in Figure 1. The san-
itizer applies HtmL encoding to an input string of Unicode
characters: for each character `, either ` is kept unchanged
or encoded through numeric escaping.

It is well-known that nondeterministic finite state trans-
ducers are more expressive than deterministic finite state
transducers. The following example illustrates a class of
common list transformations when a deterministic SFT does
not exist if U ι is infinite or is up to |U ι| times larger than
the equivalent nondeterministic SFT.

Example 3. The example illustrates an SFT Encode-
Html2 that transforms an input string similar to Encode-
Html except that any substring of the input string that
matches the regular expression P = &#[0-9]; is mapped
to itself. In other words, double-encoding of some of the al-
ready encoded characters is avoided. It is straightforward to
generalize the pattern P so that it characterizes all the pos-
sible cases of the encoded outputs, but such a generalization
would make the example unnecessarily hard to follow. Let
p̀q be the following term, where ϕ[`] and d0(. . .) are defined
in Example 1,

p̀q
def
= Ite(ϕ[`], [`], Ite(0 ≤ ` < 10, [‘&’, ‘#’,d0(`), ‘;’], . . .))

Thus p̀q is a single term describing concisely all the possible
character encodings of EncodeHtml and aids in visualizing
EncodeHtml2 as the following SFT. Let d[`] be the formula
‘0’ ≤ ` ∧ ` ≤ ‘9’.

p3 p2

p0 p1

q0 q0 q1 q2 q3

ε
ε ε ε

`=‘&’/[`] `=‘#’/[`]

d[`]/[`]

`=‘;’/[`]

`=‘&’/p̀q

`=‘#’/p̀q d[`]/[`]

` 6=‘;’∧` 6=‘&’/p̀q

` 6=‘#’∧` 6=‘&’/p̀q

¬d[`]∧` 6=‘&’/p̀q` 6=‘&’/p̀q

For P = &#[0-9]{0,4}; there would be eight more states,
while a deterministic version would need a state to remember
each concrete path in P in order to determine if that path
ends with ‘;’ before knowing what to output, thus it would
have in the order of 105 more states. �

The final example illustrates a case when a deterministic
SFT does not exist independent of the size of the alpha-
bet. The example illustrates a common class of list trans-
formations referring to the occurrences of certain elements
or patterns in the input relative to the end of the list.

Example 4. Let UptoLastDot be an SFT that deletes all
characters after (including) the last occurrence of ‘.’. For
example TUptoLastDot("www.abc.org") = {"www.abc"}.

q0 q0 q1 q2
`=‘.’/[`] `=‘.’/ε

`=‘.’/ε

` 6=‘.’/[`] true/[`] ` 6=‘.’/ε �

4

5. SFT ALGORITHMS
In this section we study algorithms for composition and

equivalence of SFTs. First, we prove that SFTs are closed
under composition and give a practical composition algo-
rithm for SFTs. Next, we provide an efficient equivalence al-
gorithm for single-valued SFTs that uses as an oracle a con-
straint solver for an arbitrary theory of input labels, where a
typical theory of labels is quantifier free integer linear arith-
metic, but it could also be linear arithmetic over rationals,
or bitvectors. The immediate implications of these two algo-
rithms are decision procedures for commutativity and idem-
potence of single-valued SFTs.

In the algorithms we make use of the definitions

Source(p
ϕ/u
−−→ q)

def
= p,

Target(p
ϕ/u
−−→ q)

def
= q,

Guard(p
ϕ/u
−−→ q)

def
= ϕ,

Out(p
ϕ/u
−−→ q)

def
= u,

δA(q)
def
= {ρ ∈ δA | Source(ρ) = q}.

5.1 Composition of SFTs
Given two transductions T1 and T2, T1 ◦ T2 denotes

the transduction that maps an input word u to the set
T2(T1(u)). This definition is consistent with [14]. Notice
that ◦ applies first T1, thenT2, contrary to how ◦ is used for
standard function composition. Note that single-valuedness
is trivially preserved by composition.

Let A and B be finite transducers. A fundamental com-
position of A and B is the join composition of A and B.

Definition 4. The (join) composition of A and B is the
finite transducer

A ◦B
def
= (QA ×QB, (q

0
A, q

0
B), FA × FB ,ΣA,ΓB,∆A◦B)

where, for all (p, q) ∈ QA ×QB and a ∈ ΣA:

∆A◦B((p, q), a)
def
= {((p′, q), ε) | p

a/ε
−−→A p

′}

∪ {((p′, q′), v) | (∃u ∈ Γ+
A)

p
a/u
−−→A p

′, q
u/v
−−→B q′}

It follows easily from the definition that TA◦B = TA◦TB .
Let now A and B be fixed SFTs and assume that ρ =

γA = σB. The join composition algorithm constructs an
SFT A ◦B such that TA◦B = TA ◦TB.

The algorithm is shown in Figure 2. The algorithm uses
a procedure GetPaths(ϕ,u, q, B) that is essentially a back-
tracking search procedure over feasible paths. Given a sym-
bolic label ϕ/u of A, and a state q of B, it returns the col-
lection of all joined paths in B of length |u| that start from
p and whose guards are feasible for corresponding members
of u. For example, suppose

p1
ϕ/[u1,u2]
−−−−−−→A q1, p2

ψ1/[v1]
−−−−−→B p′

ψ2/[v2]
−−−−−→B q2

then (given θi = {` 7→ ui} for i = 1, 2),

(p1, p2)
ϕ∧ψ1θ1∧ψ2θ2/[v1θ1,v2θ2]−−−−−−−−−−−−−−−−−→A◦B (q1, q2)

Example 5. Consider the SFTs A = Negate and B =
DeleteZeros from Example 2. We construct A◦B. There is a

GetPaths(ϕ,u, q, B)
def
=

1 if u = [] yield ([], ϕ, q);

2 else foreach tr ∈ δB(q)

3 let ϕ1 = ϕ ∧ Subst(Guard(tr), {` 7→ hd(u)}));

4 if IsSat(ϕ1)

5 foreach (y, ψ, p) in GetPaths(ϕ1, tl(u),Target(tr), B)

6 yield (Subst(Out(tr), {` 7→ hd(u)})) · y, ψ, p);

A ◦B
def
=

1 let q0 = (q0A, q
0
B); Q = {q0}; δ = ∅;

2 let S be a stack with initial element q0;

3 while S is nonempty

4 pop p = (p1, p2) from S;

5 foreach p1
ϕ/u
−−−→ q1 in δA(p1)

6 foreach (v, ψ, q2) in GetPaths(ϕ,u, p2, B)

7 let q = (q1, q2);

8 add p
ψ/v
−−−→ q to δ;

9 if q /∈ Q then add q to Q and push q to S;

10 end of while;

11 let F = {(q1, q2) ∈ Q | q1 ∈ FA ∧ q2 ∈ FB};

12 eliminate states in Q \ {q0} that do not reach F ;

13 return (Q, q0, F, σA, γB , δ);

Figure 2: Join composition algorithm for SFTs.

single pair state (p, r) and a single transition p
true/[−`]
−−−−−−→A p.

GetPaths(true, [−`], r,B) returns

{([],−` = 0, r), ([−`],−` 6= 0, r)}

Thus, there are two transitions in A ◦ B:

δA◦B = {(p, r)
−`=0/[]
−−−−−→ (p, r), (p, r)

−` 6=0/[−`]
−−−−−−−→ (p, r)}.

If we construct B◦A instead, we start with the B transitions
and we end up with transitions

δB◦A = {(r, p)
`=0/[]
−−−−→ (r, p), (r, p)

` 6=0/[−`]
−−−−−−→ (r, p)}.

Note that A ◦ B and B ◦A are equivalent in this case. �

GetPaths uses satisfiabilty checking to yield only those
paths for which the corresponding output from A, when
used as input of B, does not cause the resulting guard to
become unsatisfiable. If the satisfiability check is removed,
the procedure will still be correct in the context of the join
algorithm, but this may cause a combinatorial explosion of
the paths, as would happen in the next example.

Example 6. Consider EncodeHtml from Example 1, let
A = B = EncodeHtml but rename q to p in A. We construct
A◦B. There is only a single pair state (p, q). First, consider
the transition

p
ϕ[`]/[`]
−−−−→A p

There is only one transition in B that does not cause the
composed guard to be unsatisfiable, the composed transition

5

is (after simplifying the formulas):

(p, q)
ϕ[`]/[`]
−−−−→A◦B (p, q)

Next, consider the transition

p
¬ϕ[`]∧0≤`<10/[‘&’,‘#’,d0(`),‘;’]−−−−−−−−−−−−−−−−−−−−→A p

In B we need to consider all paths of length 4 and there are
a total of 64 such paths (since B has 6 transitions from q
to q). Only one of these paths is possible. In particular, for
all ` and i, ϕ[di(`)] holds because ‘0’ ≤ di(`) ≤ ‘9’, while
for ` ∈ {‘&’, ‘#’, ‘;’}, ¬ϕ[`] ∧ 10 ≤ ` < 100 holds, and thus
double-encoding occurs for these characters in A ◦ B.

(p, q)
¬ϕ[`]∧0≤`<10∧ϕ[d0(`)]/"&#"·[d0(`)]·";"
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→A◦B (p, q)

The remaining cases are similar. The benefit of early prun-
ing of the search space using satisfiability checks is obvious
in this example. �

Theorem 1. TA◦B = TA ◦TB.

Proof. First note that the satisfiability check in the com-
position algorithm removes transitions that are infeasible
and therefore do not affect the transduction. We can also
ignore states in A◦B that are not reachable from the initial
state, and states that do not reach a final state. Suppose
(p1, p2) is reachable from the initial state (q0A, q

0
B). The def-

inition of GetPaths follows exactly the construction of the
composed transitions in Definition 4 from (p1, p2), which im-
plies the theorem together with the main while-loop in the
join algorithm, that considers all possible (p1, p2) that are
reachable from the initial state by virtue of DFS.

5.2 Equivalence of SFTs
We introduce an algorithm for deciding equivalence of

single-valued SFTs. While general equivalence of finite state
transducers is undecidable [16] the undecidability is caused
by allowing unboundedly many different outputs for a given
input. The case that is practically most relevant for us is
when transducers are single-valued, since this case corre-
sponds closely to functional transformations over lists com-
puted by concrete programs. As illustrated above, this does
(in general) not rule out nondeterministic SFTs, i.e., SFTs
whose underlying finite automaton is nondeterministic. This
is important because, several useful single-valued transduc-
tions, are either not expressible as deterministic SFTs (e.g.
TUptoLastDot) or cause a blowup in the size of the SFT (e.g.
TEncodeHtml2).

In the following let A and B be two SFTs such that σ =
σA = σB and γ = γA = γB . A and B are equivalent if
TA = TB . Let

D(A)
def
= {v | TA(v) 6= ∅}.

Checking equivalence of A andB reduces to two independent
tasks:

Domain equivalence : D(A) = D(B).

Partial equivalence : (∀v ∈ D(A)∩D(B)) TA(v)=TB(v)

Checking domain-equivalence is decidable for all SFTs over a
decidable label background. This follows from results known
for symbolic finite automata or SFAs that generalize finite
automata by allowing predicates as labels.

Functional compatibility (A
1
= B) :

∀x y z ((y ∈ TA(x) ∧ z ∈ TB(x)) ⇒ y = z)

Functional compatibility, or simply compatibility, is a weak
form of partial equivalence. The following properties of com-
patibility follow directly from the definitions.

Proposition 1. A is single-valued iff A
1
= A. If A and

B are single-valued then A
1
= B iff A and B are partially

equivalent.

The product A×B of A and B is a 2-output-SFT that is a
variation of the product of SFAs [41]. The product A×B is
defined as the least fixpoint of pair states Q ⊆ QA×QB and
transitions of A×B under the following conditions (e.g., by
using DFS):

• (q0A, q
0
B) ∈ Q,

• if (p1, p2) ∈ Q, p1
ϕ/u
−−→A q1, and p2

ψ/v
−−→B q2, then

– (q1, q2) ∈ Q and

– (p1, p2)
ϕ∧ψ/(u,v)
−−−−−−−→A×B (q1, q2),

provided that IsSat(ϕ ∧ ψ).

All deadends, states from which FA × FB is not reachable,
are eliminated from A× B. Given (p, q) ∈ QA×B, we write

T
(p,q)
A (v) for the set of outputs produced by A for the input

v accepted from the state (p, q). Similarly for B. The fol-
lowing property of the construction follows from definitions.

(∀v ∈ D(A) ∩D(B))

TA(v) = TB(v) ⇔ T
(q0

A
,q0

B
)

A (v) = T
(q0

A
,q0

B
)

B (v)
(2)

An SFA is an SFT such that all transitions have an empty
output. We use the following definition that follows from the
product construction.

Definition 5. Let A be an SFT and D an SFA. The do-
main restriction of A with respect to D, denoted by A � D
is the SFT obtained from A×D by eliminating the second
output component ε from the transitions.

The following property follows from the definitions.

TA�D(v) =

{
TA(v), if v ∈ D(D);
∅, otherwise.

(3)

A promise of a state (p, q) ∈ QA×B is a pair of concrete
lists (α, β) such that either α = ε or β = ε and if (p, q)
is reached from (q0A, q

0
B) on input v and matching output

prefix w then the outputs from A and B so far are w ·α and
w · β respectively. Intuitively, there is a promise to output
α (resp. β) before any further output from A (resp. B).

Example 7. Let A and B be the following SFTs:

A : p0 p0 p1 p2
0≤`≤1/[`, `, `] 0≤`≤1/[`]

0≤`≤1/[`]

B : q0 q0 q1 q2
1≤`≤2/[`] 1≤`≤2/[`, `, `]

1≤`≤2/[`]

6

Then A×B is the following 2-output-SFT. Note that other
possible pair states are either not reachable (e.g. (p0, q1)) or
deadends (e.g. (p1, q2)).

p0, q0 p0, q0 p1, q1 p2, q2
`=1/([`, `, `], [`]) `=1/([`], [`, `, `])

`=1/([`], [`])

One promise of the state (p1, q1) is the pair ([1, 1], ε), for
example for the input prefix [1, 1, 1], both A and B have
output [1, 1, 1] but A still has the pending output [1, 1]. �

Lemma 1. If there exists a state in A×B that is reached

with two different promises then A 6
1
= B.

Proof. Suppose we can reach a state (p, q) in A × B
from the initial state first time with some input sequence
z1, common output o1, and promise (α1, β1), and a second
time with some input sequence z2, common output o2, and
promise (α2, β2) such that (α2, β2) 6= (α1, β1). Let w be
any input sequence from (p, q) to a final state of A × B, w
exists because A×B has no deadends. Suppose (by way of

contradiction) that A
1
= B. It follows that

TA(z1 · w) = {o1 · α1 · o3} = TB(z1 · w) = {o1 · β1 · o4}
TA(z2 · w) = {o2 · α2 · o3} = TB(z2 · w) = {o2 · β2 · o4}

for some {o3} = T
(p,q)
A (w) and {o4} = T

(p,q)
B (w). Note that

if |T(p,q)
A (w)| > 1 or |T(p,q)

B (w)| > 1 then this would violate

A
1
= B for example for the input z1 · w. So

α1 · o3 = β1 · o4, α2 · o3 = β2 · o4.

We reach contradiction by case analysis.

• Case α1 = ε, β1 = ε, α2 6= ε, β2 = ε. Then o3 = o4 and
α2 · o3 = o4, but this contradicts that α2 6= ε.

• Case α1 6= ε, β1 = ε, α2 6= ε, β2 = ε. Then α1 · o3 = o4
and α2 · o3 = o4, but this contradicts that α1 6= α2.

• Case α1 = ε, β1 6= ε, α2 6= ε, β2 = ε. Then o3 = β1 · o4
and α2 · o3 = o4, and thus o3 = β1 · α2 · o3, but this
contradicts that β1 · α2 6= ε.

The remaining cases are symmetrical.

Lemma 1 is a key component in the main algorithm by

providing an O(|QA×B |) search bound to detect if A 6
1
= B.

What is quite unusual about the lemma, which sets it apart
from typical automata based properties, is that it is not
constructive, it does not provide a concrete input witness v

that shows A 6
1
= B. The main algorithm is given in Figure 3.

In the algorithm, the elements of S are the states still to
be verified. Q is the map from reached states to promises
associated with those states.

The following theorem states the correctness of the com-
patibility algorithm.

Theorem 2. CheckCompatibility(A,B) fails iff A 6
1
= B.

Proof. For each state p, the while-loop verifies locally,
that for any input enabled in p outputs will match up to
maximum prefix of outputs from A and B, where p is asso-
ciated with prior promises Q(p) = (α, β), where at least one
of α or β is ε. The cases that cause violation of compatibility
are the following, in the order of FAILs:

CheckCompatibility(A,B)
def
=

1 let C = A× B;

2 let Q = {q0C 7→ (ε, ε)};

3 let S be a stack with initial element q0C ;

4 while S is nonempty

5 pop p from S;

6 let (α, β) = Q(p);

7 foreach p
ϕ/(u,v)
−−−−−→ q in δC(p)

8 let x = α · u; y = β · v;

9 if q ∈ FC ∧ |x| 6= |y| FAIL;

10 let m = min(|x|, |y|);

11 let ψ = ϕ ∧ (
∨
i<m x(i) 6= y(i));

12 if IsSat(ψ) FAIL;

13 let x′ = if |x| > m then [x(m), . . .] else ε;

14 let y′ = if |y| > m then [y(m), . . .] else ε;

15 if x′ = ε ∧ y′ = ε

16 if q /∈ Dom(Q) push q to S and set Q(q) = (ε, ε);

17 else if Q(q) 6= (ε, ε) FAIL;

18 else if y′ = ε

19 let `′ be a fresh variable of sort σ;

20 let ϕ1 = (
∨
i<|x′| x

′(i) 6= Subst(x′(i), {` 7→ `′}));

21 let ϕ2 = ϕ ∧ Subst(ϕ, {` 7→ `′}) ∧ ϕ1;

22 if IsSat(ϕ2) FAIL;

23 let a′ = (x′)M where M |= ϕ;

24 if q /∈ Dom(Q) push q to S and set Q(q) = (a′, ε);

25 else if Q(q) 6= (a′, ε) FAIL;

26 else . . . (symmetrical case for x′ = ε)

27 end of while;

28 SUCCEED;

Figure 3: Compatibility algorithm for SFTs.

1. There exist outputs of different length when q is final.

2. Some prefix of outputs differ.

3. Promises differ for q, use Lemma 1.

4. If ϕ2 is satisfiable there exist two different values for
the (symbolic) pending output x′ from A, use Lemma 1.

5. When ϕ2 is not satisfiable, any model M |= ϕ gives
the same interpretation α′ for the (symbolic) pending
output x′. If there is already a pending output for q
that differs from (α′, ε), use Lemma 1.

If all local verifications hold, then compatibility follows, since
the scope of the label variable is a single symbolic transi-
tion. Termination of the algorithm follows from termination
of product, termination of satisfiability checks, finiteness of
QA×QB , and that each member of QA×QB is explored at
most once.

Note that all satisfiability checks use at most two free
variables. (Two variables are needed in line 20 in Figure 3.
All other satisfiability checks, including the ones performed

7

in the construction of A×B need only a single free variable.)
What is surprising is that the algorithm is

effectively uniform in the theory of labels.

No assumptions are needed about the theory of labels be-
sides the standard assumptions of being closed under Boolean
operations, substitutions, and equality. In contrast, the re-
cent extension [1] of finite state transducers restricts the
theories to be total orders with single order predicate and
no other symbols to avoid undecidability. The other main
advantage of SFTs over finite state transducers is

succinctness.

The expansion of A to [[A]] is either infinite or may increase
the size exponentially. Thus, while partial-equivalence of
single-valued finite state transducers is solvable O(n2) [10]
steps, an expansion from an SFT over a large alphabet to
a finite state transducer leads to O(2n) complexity (recall
Example 3). However, the partial-equivalence algorithm for
single-valued SFTs is O(n2) provided that satisfiability of
the label theory is at most O(n2). A particular label theory
whose satisfiability has the given complexity is linear arith-
metic without addition and with at most two free variables.
In general, assuming that that sizes of the individual label
formulas are small relative to the total sizes of the SFTs,
the local satisfiability checks may be considered to be O(1)
operations. For a precise complexity analysis one would first
need to fix the label theory as well as the representation of
the formulas.

Example 8. We illustrate the partial-equivalence check-
ing algorithm on the SFTs A and B in Example 7. The
search starts from (p0, q0) with Q = {(p0, q0) 7→ (ε, ε)} and
proceeds as follows from line 7. Consider the transition
(p0, q0) −→ (p1, q1). We have x = [`, `, `] and y = [`] and
(p1, q1) is not final. So m = 1 and ψ = (` = 1∧` 6= `). Since
ψ is unsatisfiable let x′ = [`, `] and y′ = ε and continue from
line 19. The formula ϕ2 is ` = 1 ∧ `′ = 1 ∧ (` 6= `′ ∨ ` 6= `′)
and is thus unsatisfiable. The promise calculated for (p1, q1)
is ([1, 1], ε), thus

Q = {(p0, q0) 7→ (ε, ε), (p1, q1) 7→ ([1, 1], ε)}

and the algorithm continues from (p1, q1) at line 7. Consider
the transition (p1, q1) −→ (p1, q1) first. We have x = [1, 1, `],
y = [`], m = 1 and ψ = (` = 1 ∧ 1 6= `), so x′ = [1, `] and
y′ = ε. The formula ϕ2 is ` = 1 ∧ `′ = 1 ∧ (1 6= 1 ∨ ` 6= `′)
and is thus unsatisfiable. The promise calculated for (p1, q1)
is again ([1, 1], ε), that is identical with the existing promise.
Analysis of the other transition (p1, q1) −→ (p2, q2) is similar
and leads to line 16, so

Q = {. . . , (p2, q2) 7→ (ε, ε)}

Finally, there are no transitions from (p2, q2), so the algo-

rithm terminates with the verdict A
1
= B. �

5.3 Algebra of SFTs
We consider an algebra of SFTs, in Figure 4, that allows us

to express several useful decision problems involving SFTs
and SFAs. Note that the join composition T ◦ A of an SFT
T with an SFA A is again an SFA because all the outputs of
T ◦A are empty, T ◦ A is the inverse image of T under A.

A ::= sfa | A \ A | A ∩A | T ◦A
T ::= sft | T ◦ T | T � A

F ::= A ⊆ A | T
1
= T | F ∧ F | ¬F

Figure 4: Algebra of SFTs; A is a valid SFA ex-

pression; T is a valid SFT expression; F is a valid

formula; sfa stands for an explicit definition of an

SFA; sft stands for an explicit definition of an SFT.

Example 9. The following SFA is the inverse image of
UptoLastDot (from Example 4) under the SFA("^[a-z]\.$"):

q0 q0 q1 q2 q3
` 6=‘.’ ∧ ‘a’≤`≤‘z’ `=‘.’ `=‘.’

` 6=‘.’

For SFAs the empty output is typically omitted. �

The formulas in Figure 4 are assumed to be well-sorted
with respect to the input sorts and the output sorts of the
SFAs and SFTs. The following theorem is the main decid-
ability result of this paper.

Theorem 3. The algebra of SFTs modulo a decidable la-
bel theory is decidable.

Proof. The decidability of the SFA operations follows
from the SFA properties studied in [30, 41]. The decidability
of the SFT operations follows from Theorem 1, Theorem 2,
(3), and Boolean satisfiability.

The following corollary identifies a collection of practi-
cally relevant decision problems that follow from Theorem 3.
Subsumption of SFTs, A v B, is the problem of deciding if
TA(v) ⊆ TB(v) for all v. Reachability is the problem of
existence of an input that is transformed to an output in a
given set of outputs accepted by an SFA.

Corollary 1. The following decision problems over single-
valued SFTs modulo a decidable label theory are decidable.

• Subsumption.

• Equivalence.

• Idempotence.

• Commutativity.

• Reachability.

Proof. Assume A and B are single-valued and recall

Proposition 1. Subsumption, A v B, is d(A) ⊆ d(B)∧A
1
=

B. Equivalence, A ≡ B, is A v B ∧B v A. Idempotence is
A ≡ A ◦ A. Commutativity is A ◦ B ≡ B ◦ A. Reachability
of a given output SFA D is A ◦D 6= ∅.

It also follows, from Proposition 1 and Theorem 2, that we
can decide single-valuedness of SFTs. This is a practically
useful property, because it helps to verify that an SFT is
well-defined, when it is supposed to be single-valued, e.g.,
as a result of a translation from a concrete program.

Corollary 2. Single-valuedness of SFTs modulo a decid-
able label theory is decidable.

8

The following example illustrates a class of common list
transformations that involves a somewhat simplified case
of the regular lookahead problem that occurs in Example 3
above. The point is to illustrate a simple scenario involv-
ing the use of the algorithms. Such SFTs are in general
not intended to be handwritten but provide an intermediate
representation for analysis, in particular, the compilation
from Bek programs to SFTs is explained in [18]. We write
A(v) = w for TA(v) = {w} for v ∈ D(A).

Example 10. The example illustrates an SFT GetTags.
The intension is to extract from a given input string all
substrings of the form [‘<’, `, ‘>’], where ` 6= ‘<’. For example

GetTags("<<s><<>><f><t") = "<s><>><f>"

Suppose that the following C# code is intended to imple-
ment GetTags where q is a variable that is used to keep track
of the current position in the pattern [‘<’, `, ‘>’]:

1: string output = ""; int q = 0; char d = ’\0’;
2: foreach (char c in input)

3: {
4: if (q == 0) q = (c == ’<’ ? 1 : 0);
5: else if (q == 1) q = (c == ’<’ ? 1 : 2);

6: else
7: {

8: if (c == ’>’) output = output + "<" + d + ">";
9: q = 0;

10: }
11: d = c;
12: }

13: return output;

Then GetTags is the following SFT:1

q2

q0 q0 q1

q′2

` = ‘<’/ε

` 6= ‘<’/[‘<’, `]

` 6= ‘<’/ε

` = ‘>’/[‘>’]

` 6= ‘>’/ε

` 6= ‘<’/ε ` = ‘<’/ε

First, GetTags is expected to be idempotent. This is con-
firmed by checking GetTags ◦ GetTags ≡ GetTags. Second,
does GetTags detect all tags? In other words, does there ex-
ist an input v that contains the pattern P = "<[^<]>" but
GetTags(v) = ε?2 The problem is to decide the reachability
problem (4)

(GetTags � SFA(P)) ◦E
︸ ︷︷ ︸

D

6= ∅ (4)

where QE = FE = {q0E} and δE = ∅, i.e., L(E) = {ε}. It
turns out that D (when minimized) is an SFA with 8 states,
and, e.g., "<a<a>" ∈ L(D), i.e., GetTags("<a<a>") = ε. The
problem is that there is a missing case in GetTags: line 9
of the C# code should be q = (c == ’<’ ? 1 : 0);. The
corresponding SFT GetTags2 that handles the missing case

1Note that if the characters are represented as integers, then
a deterministic version of GetTags does not exists, and if the
characters are represented as 16-bit bitvectors then it blows
up by a factor of 216.
2Note that the regex P implicitly allows an arbitrary prefix
and suffix of any characters.

is as follows:

q2

q0 q0 q1

q′2

` = ‘<’/ε

` 6= ‘<’/[‘<’, `]

` 6= ‘<’/ε

` = ‘<’/ε

` = ‘>’/[‘>’]

` 6= ‘<’ ∧ ` 6= ‘>’/ε

` 6= ‘<’/ε ` = ‘<’/ε

By repeating the checks, idempotence still holds and (4)
holds for GetTags2. The checks assume that the SFTs are
indeed single-valued. Suppose for example that the check
` 6= ‘>’ is missing in the condition of the transition from
q′2 to q0 in GetTags2, e.g., as a result of a translation error
from the C# code, say the faulty SFT is GetTags3. Then

GetTags3 6
1
= GetTags3. �

5.4 Model generation
The algorithm for compatibility A

1
= B plays a central

role in most of the decision problems. However, it is not
constructive, e.g., it does not provide a concrete witness v
such that TA(v) 6= TB(v) when A and B are single-valued

and A 6
1
= B. Here we briefly discuss a solution to this prob-

lem, called model generation. The technique is a generaliza-
tion of the symbolic language acceptors for SFAs [41], the
generalization to SFTs is explained in more detail in [5].

State-of-the-art SMT solvers such as Z3 support an inte-
grated combination of decision procedures for the theory of
uninterpreted functions symbols, algebraic data types, linear
arithmetic, bitvector arithmetic, and the theory of arrays.
An SFT Aι/o is associated with a collection of uninterpreted
relation symbols

Accq : list〈ι〉 × list〈o〉 → bool (q ∈ QA)

For each state p ∈ QA the following auxiliary (mutually
recursive) axioms are asserted to the solver. For example,

suppose p
ϕi[`]/[ti[`]]−−−−−−−→A pi for i ∈ {1, 2}, then

(∀ y : list〈ι〉, z : list〈o〉)
Accq(y, z) ⇔

∨

i∈{1,2}(y 6= ε ∧ ϕi[hd(y)] ∧

z 6= ε ∧ hd(z) = ti[hd(y)] ∧
Accpi(tl(y), tl(z)))

The auxiliary axioms can be guaranteed to be well-founded

by first eliminating epsilon moves. Provided that A 6
1
= B has

been established, satisfiability of the following assertion will
generate a witness for some y = [`1, . . . , `n], n ≥ 0, where
`i : ι, for i ≤ n, are uninterpreted constants

Accq0
A

(y, z) ∧Accq0
B

(y,w) ∧ z 6= w (5)

Essentially, the axioms are used as a semidecision procedure
to search for a witness. We have implemented this technique
to support witness generation in combination with the im-
plementation of the algebra of SFTs in the context of the
Bek project [3].

Example 11. Consider the SFTs GetTags and GetTags2

in Example 10. We know that GetTags 6
1
= GetTags2. Model

generation for (5) generates a witness y = [‘<’, 0, ‘<’, 0, ‘>’],

that is also a shortest witness of GetTags 6
1
= GetTags2. Sim-

ilarly, model generation for GetTags3 6
1
= GetTags3 generates

a witness [‘<’, 0, ‘>’] that is also a shortest witness. �

9

Our implementation contains roughly 5, 000 lines of C#
code implementing the basic transducer algorithms and Z3 [9]
integration. We build on an existing symbolic finite au-
tomata analysis library; if this is also included then the total
size is roughly 10, 000 lines of C# code. Our technical report
discusses performance in the context of the Bek project [18].

6. RELATED WORK
General equivalence of finite state transducers is undecid-

able [16], and already so for very restricted fragments [22].
Equivalence of decidability of single-valued GSMs was shown
in [36], and extended to the finite-valued case (there exists
k such that, for all v, |TA(v)| ≤ k) in [8, 45]. The de-
cidability of equivalence of the finite-valued case does not
follow from the single-valued case. Corresponding decid-
ability result of equivalence of finite-valued SFTs is shown
in [5]. Unlike for the single-valued case that has a practi-
cal algorithm (Figure 3), the finite-valued case is substan-
tially harder, the compatibility algorithm does not general-
ize to this case because the satisfiability checks cannot be
made locally: Lemma 1 does not show violation of partial-
equivalence in the finite-valued case.

In recent years there has been considerable interest in au-
tomata over infinite languages [37], starting with the work on
finite memory automata [23], also called register automata.
Finite words over an infinite alphabet are often called data
words in the literature. Other automata models over data
words are pebble automata [29] and data automata [6]. Sev-
eral characterizations of logics with respect to different mod-
els of data word automata are studied in [4]. This line of
work focuses on fundamental questions about definability,
decidability, complexity, and expressiveness on classes of au-
tomata on one hand and fragments of logic on the other
hand. A different line of work on automata with infinite al-
phabets introduces lattice automata [15] that are finite state
automata whose transitions are labeled by elements of an
atomic lattice with motivation coming from verification of
symbolic communicating machines.

Finite state automata with arbitrary predicates over la-
bels, called predicate-augmented finite state recognizers, or
symbolic finite automata (SFAs) in the current paper, were
first studied in the context of natural language process-
ing [30]. While the work [30] views symbolic automata
as a “fairly trivial” extension, the fundamental algorithmic
questions are far from trivial. For example, it is shown
in [19] that symbolic complementation by a combinatorial
optimization problem called minterm generation leads to
significant speedups compared to state-of-the-art automata
algorithm implementations.

The work in [30] introduces a different symbolic extension
to finite state transducers called predicate-augmented finite
state transducers. This extension is not expressive enough
for describing SFTs. Besides identities, it is not possible to
establish functional dependencies from input to output that
are needed for example to encode transformations such as
EncodeHtml. Streaming transducers [1] provide another re-
cent symbolic extension of finite transducers where the label
theories are restricted to be total orders, in order to main-
tain decidability of equivalence, e.g., full linear arithmetic is
not allowed.

SFTs are used in the Bek project [3, 18] (Bek is also avail-

able online as a web service3) and use the SMT solver Z3 [47,
9] for solving label constraints that arise during composition
and equivalence checking algorithms, as well as for witness
search by model generation using auxiliary SFT axioms. Fi-
nite state transducers have been used for dynamic and static
analysis to validate sanitization functions in web applica-
tions in [2], by an over-approximation of the strings accepted
by the sanitizer using static analysis of existing PHP code.
Other security analysis of PHP code, e.g., SQL injection at-
tacks, use string analyzers to obtain over-approximations (in
form of context free grammars) of the HTML output by a
server [28, 43, 44].

Our work is complementary to previous efforts in using
SMT solvers to solve problems related to list transforma-
tions. HAMPI [24] and Kaluza [34] extend the STP solver
to handle equations over strings and equations with multiple
variables. The work in [20] shows how to solve subset con-
straints on regular languages. In contrast, we show how to
combine any of these solvers with SFTs whose edges can take
symbolic values in the theories understood by the solver.

Axiomatization of SFAs using a background of lists was
initially introduced in [41] and is used to provide integrated
support for regex -constraints in parameterized unit testing
of .NET code [33, 39], and to provide analysis support for
like-expressions in SQL query analysis [42]. Axiomatization
of SFAs was extended to symbolic PDAs in [40].

Top-down tree transducers [14] provide another extension
of finite state transducers: a finite state transducer is a top-
down tree transducer over a monadic ranked alphabet. Sim-
ilar to finite state transducers, decidability of equivalence
of top-down tree transducers is known for the single-valued
case [11, 13], including a specialized method for the deter-
ministic case [7], and also for the finite-valued case [38].
Although several extensions of top-down tree transducers
have been studied, e.g., [14, 27, 12, 32, 26, 25, 31], as far as
we know, the label alphabet is always fixed and finite, none
of the extensions have considered a symbolic representation
of the transducers where the labels are factored out as a
separate theory.

7. CONCLUSION
We introduced a symbolic extension of the theory of clas-

sical finite transducers, where transitions are represented
by terms modulo a given background theory. It enables a
new powerful algorithmic foundation to address many differ-
ent software analysis problems in combination with state-of-
the-art constraint solving techniques. The core algorithms
we presented are composition and equivalence checking of
single-valued symbolic finite transducers, and we showed
how to decide whether arbitrary symbolic transducers have
the single-valuedness property. These algorithms make it
possible to work with symbolic transducers, just as tradi-
tionally done with finite state transducers, as first class citi-
zens in designing new analyses and program transformation
techniques by leveraging the continuous advances and im-
provements in constraint solvers and satisfiability modulo
theories solvers. We demonstrated how our work directly
applies to analysis of web string sanitizers and we expect
more applications to follow.

3http://www.rise4fun.com/Bek

10

8. REFERENCES
[1] R. Alur and P. Cerný. Streaming transducers for

algorithmic verification of single-pass list-processing
programs. In POPL’11, pages 599–610. ACM, 2011.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing
static and dynamic analysis to validate sanitization in web
applications. In IEEE Oakland Security and Privacy, 2008.

[3] Bek. http://research.microsoft.com/bek.
[4] M. Benedikt, C. Ley, and G. Puppis. Automata vs. logics

on data words. In CSL, volume 6247 of LNCS, pages
110–124. Springer, 2010.

[5] N. Bjørner and M. Veanes. Symbolic transducers. Technical
Report MSR-TR-2011-3, Microsoft Research, January 2011.

[6] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin,
and C. David. Two-variable logic on words with data. In
LICS, pages 7–16. IEEE, 06.

[7] B. Courcelle and P. Franchi-Zannettacchi. Attribute
grammars and recursive program schemes. Theoretical
Computer Science, 17:163–191, 1982.

[8] K. Culic and J. Karhumäki. The equivalence of
finite-valued transducers (on HDTOL languages) is
decidable. Theoretical Computer Science, 47:71–84, 1986.

[9] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In TACAS’08, LNCS. Springer, 2008.

[10] A. J. Demers, C. Keleman, and B. Reusch. On some
decidable properties of finite state translations. Acta
Informatica, 17:349–364, 1982.

[11] J. Engelfriet. Some open questions and recent results on
tree transducers and tree languages. In R. V. Book, editor,
Formal Language Theory, pages 241–286. Academic Press,
New York, 1980.

[12] J. Engelfriet and S. Maneth. A comparison of pebble tree
transducers with macro tree transducers. Acta Informatica,
39:2003, 2003.

[13] Z. Esik. Decidability results concerning tree transducers.
Acta Cybernetica, 5:1–20, 1980.

[14] Z. Fülöp and H. Vogler. Syntax-Directed Semantics:
Formal Models Based on Tree Transducers. EATCS.
Springer, 1998.

[15] T. L. Gall and B. Jeannet. Lattice automata: A
representation for languages on infinite alphabets, and
some applications to verification. In SAS 2007, volume
4634 of LNCS, pages 52–68, 2007.

[16] T. Griffiths. The unsolvability of the equivalence problem
for Λ-free nondeterministic generalized machines. J. ACM,
15:409–413, 1968.

[17] W. Hodges. Model theory. Cambridge Univ. Press, 1995.
[18] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and

M. Veanes. Bek: Modeling imperative string operations
with symbolic transducers. Technical Report
MSR-TR-2010-154, Microsoft Research, November 2010.

[19] P. Hooimeijer and M. Veanes. An evaluation of automata
algorithms for string analysis. In VMCAI’11, LNCS.
Springer, 2011.

[20] P. Hooimeijer and W. Weimer. A decision procedure for
subset constraints over regular languages. In PLDI ’09:
Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, pages
188–198, New York, NY, USA, 2009. ACM.

[21] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley,
1979.

[22] O. Ibarra. The unsolvability of the equivalence problem for
Efree NGSM’s with unary input (output) alphabet and
applications. SIAM Journal on Computing, 4:524–532,
1978.

[23] M. Kaminski and N. Francez. Finite-memory automata. In
31st Annual Symposium on Foundations of Computer
Science (FOCS 1990), volume 2, pages 683–688. IEEE,
1990.

[24] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D.
Ernst. HAMPI: a solver for string constraints. In ISSTA,
2009.

[25] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order
multi-parameter tree transducers and recursion schemes for
program verification. In Proceedings of the 37th annual
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL’10, pages 495–508. ACM,
2010.

[26] A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The
power of extended top-down tree transducers. SIAM J.
Comput., 39:410–430, June 2009.

[27] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML
transformers. In Proc. 19th ACM Symposium on Principles
of Database Systems (PODS’2000), pages 11–22. ACM,
2000.

[28] Y. Minamide. Static approximation of dynamically
generated web pages. In WWW ’05: Proceedings of the
14th International Conference on the World Wide Web,
pages 432–441, 2005.

[29] F. Neven, T. Schwentick, and V. Vianu. Finite state
machines for strings over infinite alphabets. ACM Trans.
CL, 5:403–435, 2004.

[30] G. V. Noord and D. Gerdemann. Finite state transducers
with predicates and identities. Grammars, 4:2001, 2001.

[31] C.-H. L. Ong and S. J. Ramsay. Verifying higher-order
functional programs with pattern-matching algebraic data
types. In POPL’11, pages 587–598. ACM, 2011.

[32] T. Perst and H. Seidl. Macro forest transducers.
Information Processing Letters, 89(3):141–149, 2004.

[33] Pex. http://research.microsoft.com/projects/pex.
[34] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, F. Mao,

and D. Song. A symbolic execution framework for
javascript. In IEEE Security and Privacy, 2010.

[35] P. Saxena, D. Molnar, and B. Livshits. Scriptgard:
Preventing script injection attacks in legacy web
applications with automatic sanitization. Technical Report
MSR-TR-2010-128, Microsoft Research, August 2010.

[36] M. P. Schützenberger. Sur les relations rationnelles. In GI
Conference on Automata Theory and Formal Languages,
volume 33 of LNCS, pages 209–213, 1975.

[37] L. Segoufin. Automata and logics for words and trees over

an infinite alphabet. In Z. Ésik, editor, CSL, volume 4207
of LNCS, pages 41–57, 2006.

[38] H. Seidl. Equivalence of finite-valued tree transducers is
decidable. Math. Systems Theory, 27:285–346, 1994.

[39] N. Tillmann and J. de Halleux. Pex - white box test
generation for .NET. In TAP’08, volume 4966 of LNCS,
pages 134–153, Prato, Italy, April 2008. Springer.

[40] M. Veanes, N. Bjørner, and L. de Moura. Symbolic
automata constraint solving. In C. Fermüller and
A. Voronkov, editors, LPAR-17, volume 6397 of LNCS,
pages 640–654. Springer, 2010.

[41] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic
Regular Expression Explorer. In ICST’10. IEEE, 2010.

[42] M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symbolic
SQL query explorer. In LPAR-16, LNAI. Springer, 2010.

[43] G. Wassermann and Z. Su. Sound and precise analysis of
web applications for injection vulnerabilities. In PLDI,
2007.

[44] G. Wassermann, D. Yu, A. Chander, D. Dhurjati,
H. Inamura, and Z. Su. Dynamic test input generation for
web applications. In ISSTA, 2008.

[45] A. Weber. Decomposing finite-valued transducers and
deciding their equivalence. SIAM Journal on Computing,
22(1):175–202, February 1993.

[46] S. Yu. Regular languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages,
volume 1, pages 41–110. Springer, 1997.

[47] Z3. http://research.microsoft.com/projects/z3.

11

